Twistor inspired developments in perturbative QCD

Nigel Glover

IPPP, University of Durham

SUSY 2005 The Millennium Window to Particle Physics Durham, 20 July 2005

Twistor inspired developments in perturbative QCD - p.

How to calculate scattering amplitudes

- Off-shell methods Traditional Feynman diagram approach for off-shell Greens functions
- On-shell methods Based on S-matrix ideas of 1960's but recently inspired by Witten's proposal to relate perturbative gauge theory amplitudes to topological string theory in twistor space

Witten, hep-th/0312171

- \Rightarrow MHV rules
- ⇒ BCFW recursion relations
- ⇒ Generalised unitarity
- Common methods
 - Colour ordered amplitudes
 - Spinor helicity approach

Common methods : Colour Ordered Amplitudes

$$\mathcal{A}_n(1,\ldots,n) = \sum_{perms} Tr(T^{a_1}\ldots T^{a_n})A_n(1,\ldots,n)$$

Colour-stripped amplitudes A_n : cyclically ordered

Order of external gluons fixed

The subamplitudes A_n have nice properties in the infrared limits.

Can reconstruct the full amplitude A_n from A_n . In the large N limit,

$$|\mathcal{A}_n(1,\ldots,n)|^2 \sim N^{n-2} \sum_{perms} |A_n(1,\ldots,n)|^2$$

Common methods : Spinor Helicity Formalism

In Weyl (chiral) representation, each helicity state is represented by a bi-spinor (a = 1, 2)

$$u_{+}(p) = \lambda_{pa}, \qquad u_{-}(p) = \tilde{\lambda}_{p}^{\dot{a}},$$
$$\overline{u_{+}(p)} = \tilde{\lambda}_{p\dot{a}}, \qquad \overline{u_{-}(p)} = \lambda_{p}^{a}$$

so that

$$\langle ij \rangle = \overline{u_{-}(p_i)} u_{+}(p_j) = \lambda_i^a \lambda_{ja} = \epsilon_{ab} \lambda_i^a \lambda_j^b$$

$$[ij] = \overline{u_{+}(p_i)} u_{-}(p_j) = \tilde{\lambda}_{i\dot{a}} \tilde{\lambda}_j^{\dot{a}} = -\epsilon_{\dot{a}\dot{b}} \tilde{\lambda}_i^{\dot{a}} \tilde{\lambda}_j^{\dot{b}}$$

We can write massless vector

$$p_{a\dot{a}} \equiv p_{\mu}\sigma^{\mu}_{a\dot{a}} = \lambda_{pa}\tilde{\lambda}_{p\dot{a}}$$

Common methods : Spinor Helicity Formalism

Polarisation vectors for particle *i*:

$$\varepsilon_{ia\dot{a}}^{-} = \frac{\lambda_{ia}\tilde{\eta}_{\dot{a}}}{[\tilde{\lambda}_{i}\tilde{\eta}]}, \qquad \varepsilon_{ia\dot{a}}^{+} = \frac{\eta_{a}\tilde{\lambda}_{i\dot{a}}}{\langle\eta\lambda_{i}\rangle}$$

Solution For real momenta in Minkowski space,

$$\tilde{\lambda} = \lambda^*$$

- **Solution** For space-time signature (+, +, -, -), $\tilde{\lambda}$, λ are real and independent
- **Solution** Amplitudes are functions of the λ_i and $\tilde{\lambda}_i$

Off-shell methods: Feynman diagrams

- ✓ Direct link to Lagrangian
- ✓ Easy to adapt to any model
- ✓ Easy to include massive particles with/without spin
- ✓ Easy to automate ⇒ tree-level packages Madgraph/Grace/CompHep/...
- ✓ Off-shell Berends-Giele recursion relations
 ⇒ tree-level packages Alpgen/HELAC/PHEGAS/...
- X Many Feynman diagrams
- **X** Large cancellations between diagrams
- **X** Loop amplitudes manpower intensive

Multi-jet production at the LHC using HELAC/PHEGAS

Draggiotis, Kleiss, Papadopoloulos

# of jets	2	3	4	5	6	7	8
# of dist.processes	10	14	28	36	64	78	130
total # of processes	126	206	621	861	1862	2326	4342
$\sigma(nb)$	-	91.41	6.54	0.458	0.030	0.0022	0.00021
% Gluonic	-	45.7	39.2	35.7	35.1	33.8	26.6

- The number of Feynman diagrams for an n gluon process increases very quickly with n
- ⇒ for the 10 gluon amplitude there are 10,525,900 diagrams
- ⇒ Feynman diagrams very inefficient for many legs
 - Control the quantum numbers of the scattering particles

Each row describes scattering with n_+ positive helicities and n_- negative helicities. Each circle represents an allowed helicity configuration from all positive on the right to all negative on the left

For example, the result of computing the 25 diagrams for the five-gluon process yields

$$A_{5}(1^{\pm}, 2^{+}, 3^{+}, 4^{+}, 5^{+}) = 0$$

$$A_{5}(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}) = \frac{\langle 12 \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \langle 34 \rangle \langle 45 \rangle \langle 51 \rangle}$$

In fact, for *n* point amplitudes,

$$A_n(1^{\pm}, 2^+, 3^+, \dots, n^+) = 0$$

$$A_n(1^-, 2^-, 3^+, \dots, n^+) = \frac{\langle 12 \rangle^4}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$$

Maximally helicity violating (MHV) amplitudes Parke, Taylor; Berends, Giele

$$A_n(1^{\pm}, 2^+, 3^+, \dots, n^+) = 0$$

effective tree-level supersymmetry

Penrose, 1967

Amplitudes in twistor space obtained by Fourier transform with respect to positive helicity spinors,

$$\tilde{\lambda}_{\dot{a}} = i \frac{\partial}{\partial \mu^{\dot{a}}}, \qquad \qquad \mu^{\dot{a}} = i \frac{\partial}{\partial \tilde{\lambda}_{\dot{a}}}$$

Momentum conservation yields

$$\delta\left(\sum k_i\right) = \int d^4x \exp\left(ix^{a\dot{a}} \sum_j \lambda_{ja} \tilde{\lambda}_{j\dot{a}}\right)$$

so that the amplitude in twistor space is

$$\tilde{A}(\lambda_i,\mu_i) = \int d^4x \int \prod_i \frac{d^2 \tilde{\lambda}_i}{(2\pi)^2} \exp\left(i \sum_j \left(\mu_j^{\dot{a}} + x^{a\dot{a}} \lambda_{ja}\right) \tilde{\lambda}_{j\dot{a}}\right) A(\lambda_i,\tilde{\lambda}_i)$$

Twistor inspired developments in perturbative QCD - p.12

Witten, hep-th/0312171

Witten observed that in twistor space external points lie on certain algebraic curves

⇒ degree of curve is related to the number of negative helicities and loops

 $d = n_{-} - 1 + l$

Twistor Space

Start from on-shell MHV amplitude and define off-shell vertices

Crucial step is off-shell continuation $P^2 \neq 0$:

$$\langle iP \rangle = \frac{\langle i^- | \mathcal{P} | \eta^-]}{[P\eta]} = \sum_j \frac{\langle i^- | \mathcal{j} | \eta^-]}{[P\eta]}$$

where $P = \sum_{j} j$ and η is lightlike auxiliary vector

Twistor inspired developments in perturbative QCD - p.1

Cachazo, Svrcek and Witten

MHV rules

Must connect up a positive helicity off-shell line to a negative helicity off-shell line with a scalar propagator

Connecting two MHV's \Rightarrow amplitude with 3 negative helicities Connecting three MHV's \Rightarrow amplitude with 4 negative helicities etc.

As an example, lets use the MHV rules to calculate one of the first non-MHV amplitudes

 $A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$

Step 1 Draw all the allowed MHV diagrams

There are six MHV graphs

Some graphs are not allowed e.g.

As an example, lets use the MHV rules to calculate one of the first non-MHV amplitudes

 $A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$

Step 1 Draw all the allowed MHV diagramsStep 2 Apply MHV rules to each diagram

Example: six gluon scattering: diagram 1

Example: six gluon scattering: diagram 2

As an example, lets use the MHV rules to calculate one of the first non-MHV amplitudes

 $A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$

- Step 1 Draw all the allowed MHV diagrams
- Step 2 Apply MHV rules to each diagram
- **Step 3** Add up diagrams and check η independence

Next-to MHV amplitude for *n* **gluons**

Simplest case: $A_n(1^-, 2^-, 3^-, 4^+, \dots, n^+)$ 2(n-3) graphs

Cachazo, Svrcek and Witten

$$A = \sum_{i=3}^{n-1} \frac{\langle 1|(2,i)|\eta|^{3}}{\langle (i+1)|(2,i)|\eta|\langle i+1i+2\rangle \dots \langle n1\rangle} \frac{1}{s_{2,i}^{2}} \frac{\langle 23\rangle^{3}}{\langle 2|(2,i)|\eta|\langle 34\rangle \dots \langle i|(2,i)|\eta|} \\ + \sum_{i=4}^{n} \frac{\langle 12\rangle^{3}}{\langle 2|(3,i)|\eta|\langle (i+1)|(3,i)|\eta| \dots \langle n1\rangle} \frac{1}{s_{3,i}^{2}} \frac{\langle 3|(3,i)|\eta|^{3}}{\langle 34\rangle \dots \langle i-1i\rangle\rangle\langle i|(3,i)|\eta|}.$$

where $(k, i) = k + \dots + i$ is the off-shell momentum \Rightarrow Lorentz invariant and gauge invariant expressions

Twistor inspired developments in perturbative QCD - p.2-

Generating all the tree amplitudes

Amplitudes with i- and j+ helicities

- MHV rules always adds one negative helicity and any number of positive helicities
 - ⇒ maps out all allowed tree amplitudes

MHV rules have been generalised to many other processes

- with massless fermions quarks, gluinos
 Georgiou and Khoze; Wu and Zhu; Georgiou, EWNG and Khoze
- ✓ with massless scalars squarks

Georgiou, EWNG and Khoze; Khoze

✓ with an external Higgs boson

Dixon, EWNG, Khoze; Badger, EWNG, Khoze

with an external weak boson

Bern, Forde, Kosower and Mastrolia

Has provided new analytic results for *n*-particle amplitudes Also useful for studying infrared properties of amplitudes Birthwright, EWNG, Khoze and Marquard

BCFW on-shell recursion relations

Britto, Cachazo, Feng; Roiban, Spradlin, Volovich Lets consider an n particle amplitude A(0).

hatted momenta are shifted to put on-shell

$$\hat{i} = i + z\eta, \qquad \hat{j} = j - z\eta, \qquad \hat{P} = P + z\eta$$

 \Rightarrow each vertex is an on-shell amplitude

BCFW recursion relations

It turns out that the shift η is not a momentum, but

$$\eta = \lambda_i \tilde{\lambda}_j \qquad OR \qquad \eta = \lambda_j \tilde{\lambda}_i$$

• The parameter z is fixed by $\hat{P}^2 = 0$

$$z = \frac{P^2}{\langle j|P|i]}$$

Solution Easy to prove that by complex analysis based on fact that only simple poles in z occur and that A(z) vanishes as $z \to \infty$

Britto, Cachazo, Feng and Witten

Requires on-shell three-point vertex contributions - both MHV and $\overline{\mathrm{MHV}}$.

BCFW - six gluon example

If we select 3 and 4 to be the special gluons, there are only three diagrams (for any helicities)

For this helicity assignment, the middle diagram is zero!. $A_6(1^-, 2^-, 3^-, 4^+, 5^+, 6^+)$

$$=\frac{1}{\langle 5|\vec{3}+\vec{4}|2\rangle}\left(\frac{\langle 1|\vec{2}+\vec{3}|4\rangle^{3}}{[23][34]\langle 56\rangle\langle 61\rangle s_{234}}+\frac{\langle 3|\vec{4}+\vec{3}|6\rangle^{3}}{[61][12]\langle 34\rangle\langle 45\rangle s_{345}}\right)$$

Extremely compact analytic results for up to 8 gluons

Other processes

BCF recursion relations have been generalised to other processes

✓ with massless fermions - quarks, gluinos

Luo and Wen

✓ gravitons

Bedford, Brandhuber, Spence and Travaglini; Cachazo and Svrcek

There is nothing (in principle) to stop this approach being applied to particles with mass.

massive coloured scalars

Badger, EWNG, Khoze and Svrcek

massive vector bosons and heavy quarks

Badger, EWNG and Khoze

One loop amplitudes

- So far, supersymmetry was not a major factor tree level amplitudes same for $\mathcal{N} = 4$ $\mathcal{N} = 1$ and QCD
- Not true at the loop level due to circulating states

$$A_n^{\mathcal{N}=4} = A_n^{[1]} + 4A_n^{[1/2]} + 3A_n^{[0]}$$
$$A_n^{\mathcal{N}=1,chiral} = A_n^{[1/2]} + A_n^{[0]}$$
$$A_n^{glue} = A_n^{\mathcal{N}=4} - 4A_n^{\mathcal{N}=1,chiral} + A_n^{[0]}$$

- All plus and nearly all-plus amplitudes do not vanish for non-supersymmetric QCD
- A lot of progress by a lot of people

One loop amplitudes

- Key point is that loop amplitudes contain both poles and cuts - e.g. log(x) has cut for negative x
- Cut contributions are constructible by using unitarity -Cut lines are on-shell and 4-dimensional

Bern, Dixon, Dunbar, Kosower; Britto, Cachazo, Feng

Pole contributions are amenable to adapted BCFW recursion relations

Bern, Dixon, Kosower

✓ N = 4 and N = 1 one-loop amplitudes are constructible from their 4-dimensional cuts ⇒ employ unitarity techniques

Bern, Dixon, Dunbar, Kosower

✓ For N = 4 all amplitudes are a linear combination of known box integrals

$$A_{n} = \Sigma \qquad a \qquad + b \qquad + c \qquad + c \qquad + d \qquad + e \qquad + f \qquad$$

Twistor space interpretation

Coefficients of boxes have very interesting structures.
Bern, Del Duca, Dixon, Kosower; Britto, Cachazo, Feng

Twistor space interpretation

Four mass box first appears in eight-point amplitude with four negative and four positive helicities

Bern, Dixon, Kosower

e.g.

QCD loops

QCD amplitudes more complicated

- (a) Not 4-dimensional cut constructible. Rational function contribution not probed by 4-d cut
- (b) All plus and almost all plus amplitudes not zero but rational functions. Not protected by SWI.

Nevertheless, all four-point and five-point amplitudes known:

Recent progress

 On-shell recurrence relations for all plus and almost all plus amplitudes

Bern, Dixon and Kosower, hep-ph/0501240 and 0505055

Recursion relations complicated by double pole terms and boundary terms

 Rational parts of infrared divergent amplitudes computed using on-shell recursion relation

Bern, Dixon and Kosower, hep-ph/0507005

Summary

- On-shell techniques are a very exciting and rapidly developing field
- MHV rules for tree-level Very simple way of deriving *n*-point amplitudes for massless partons
- BCFW recursion relations for tree-level Very powerful method for deriving amplitudes for both massless and massive particles

Badger, EWNG, Khoze and Svrcek

Generalised unitarity and one-loop amplitudes SUSY amplitudes cut constructible - coefficients of loop integrals can be *read off* from graphs QCD amplitudes contain cut-non constructible parts. These simple pole terms can be attacked using the BCFW relations

Bern, Dixon, Kosower

Expect all one-loop six-point gluon amplitudes soon

Berends-Giele : Off-shell recursion relations

Full amplitudes can be built up from simpler amplitudes with fewer particles

Purple gluons are off-shell, green gluons are on-shell. This is a recursion relation built from off-shell currents.

Berends, Giele

Particularly suited to numerical solution

ALPGEN, HELAC/PHEGAS