


High precision sparticle spectra and

anomaly mediation

With Tim Jones, Richard Hodgson and Graham Ross

SUSY05, Durham

Outline

1. The MSSM

2. The AMSB Solution

3. Slepton mass problem, F-I solution

4. Spontaneously broken anomaly-free U ′1

5. The sparticle spectrum

6. Mass Sum Rules

1





Introduction

• Increasing precision of sparticle spectrum calculations is
an important part of theoretical preparation for the LHC
and the ILC.

• MSUGRA scenario (unified scalar, gaugino masses etc)
not founded on compelling underlying theory.

• Here we focus on Anomaly Mediated Supersymmetry
Breaking (AMSB)

• Single mass parameter determines soft parameters as
renormalisation group (RG) invariant functions of the
dimensionless couplings.

• Flavour-blind, FCNCs suppressed

• AMSB in its simplest form leads to tachyonic sleptons.

• Introduction of a Fayet-Iliopoulos (FI) D-term is a
natural solution which retains the RG invariance (and
hence the ultra-violet insensitivity) of the predictions.



• Here we present the most precise spectrum calculations
to date in the AMSB scenario.

• Also show how the low energy theory employed can
arise in a natural way from a theory with an additional
anomaly-free U1 broken at a high scale.

AMSB:

[Randall, Sundrum; Giudice, Luty, Murayama,
Rattazzi; Kobayashi, Kubo, Zoupanos; Pomarol, Rattazzi;
Ghergetta, Giudice, Wells; Luty, Rattazzi; Chacko, Luty,
Maksymyk, Ponton; Katz, Shadmi, Shirman; Feng, Moroi;
Kribs; Su; Bagger, Moroi, Poppitz; Rattazzi, Strumia,
Wells; Paige, Wells; Allanach, Dedes ]

D-term:

Pomarol, Rattazzi; IJ, Jones; Carena, Huitu,
Kobayashi; Arkani-Hamed, Kaplan, Murayama and
Nomura; Murakami, Wells; Kitano, Kribs and Murayama;
Ibe, Kitano and Murayama



The Minimal Supersymmetric Standard

Model

The MSSM is defined by the superpotential:

W = H2QYtt
c +H1QYbb

c +H1LYττ
c + µH1H2

with soft breaking terms:

LSOFT =
∑

φ

m2
φφ
∗φ

+

[

m2
3H1H2 +

3
∑

i=1

1

2
Miλiλi + h.c.

]

+ [H2Qhtt
c +H1Qhbb

c +H1Lhττ
c + h.c.]

where in general Yt,b,τ and ht,b,τ are 3 × 3 matrices. We
work throughout in the approximation that the Yukawa
matrices are diagonal, and neglect the Yukawa couplings of
the first two generations.



The AMSB Solution

Remarkably the following results are RG invariant:

M = m0βg/g

h = −m0βY

(m2)ij =
1

2
m2

0µ
d

dµ
γij + k(Y )ij = (m2)ij + k(Y )ij

m2
3 = −m0βµ

• k is a constant, Y is a set of charges corresponding to
a U1 symmetry of the theory with no mixed anomalies
with the gauge group. (I.e. Tr[C(R)Y ] = 0, C(R) =
RaRa.)

• The kY term corresponds in form to a FI D-term.

• The m0-dependent parts of the expressions for M , h
and m2 are obtained if the only source of breaking is
a vev in the supergravity multiplet itself: the AMSB
scenario (m0 is then the gravitino mass).



Anomaly-free U1 symmetries

The MSSM admits two independent generation-blind
mixed-anomaly-free U1 symmetries. Possible charge
assignments:

Q uc dc H1 H2

−1

3
L −e− 2

3
L e+ 4

3
L −e− L e+ L

• The SM gauged USM
1 is L = 1, e = −2.

• An anomaly-free, flavour-blind U ′1 implies equal and
opposite charges for H1,2 and hence an allowed Higgs
µ-term.

• One of the attractive features of AMSB is that
squark/slepton mediated flavour changing neutral
currents are naturally small; this feature is preserved
by a flavour-blind U ′1.



Spontaneously broken U ′
1

With the MSSM augmented by an additional U ′1, it
is natural to ask at what scale this U ′1 is broken. We
concentrate on the idea that it is broken at very high
energies and that the only low energy remnant of it is the
set of FI-type terms that we require.

Natural to think that if a U ′1 is broken at some high
scale M then, by the decoupling theorem, all its effects
would be suppressed at energies E << M by powers of
1/M . Shall see that with a FI term this is not the case
and can be O(MSUSY) scalar mass contributions from FI
term.

Toy model with gauged U ′1 whose only effect on the
low-energy theory is the appearance of required FI terms:

Introduce fields φ, φ with opposite charges and singlet
s, with a superpotential W = λ1φφs. The scalar potential
takes the form:

V = m2
φ(φ

∗φ+ φ
∗
φ) + · · ·



+
1

2



ξ − qφ(φ∗φ− φ
∗
φ)−

∑
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eiχ
∗
iχi





2

+ · · · ..

where χi stands for all the MSSM scalars, and we have
introduced a FI term for U ′1. Take

ξ > 0, qφ > 0, ξ >> m2
0.

Scalar masses are anomaly-mediation contributions.
Include U ′1 contributions in the anomalous dimensions of
the fields.

λ1 < g′ ⇒ m2
φ < 0.

Minimum with only 〈φ〉 nonzero:

〈φ∗φ〉 =
1

2
v2
φ =

qφξ −m2
φ

q2φ
(1)

so 〈φ〉 = O(
√
ξ) for large ξ and V ∼ m2

φξ/qφ. Expanding

about the minimum, ie with φ = (vφ +H)/
√

2 , we find
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2q2φ
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· · ·

• For large ξ (i.e. large vφ ) all trace of the U ′1 disappears
except for O(m2

φ) contributions to the scalar masses.

• Can see this by treating the heavy H-field as non-
propagating and eliminating it via its equation of motion.

• In the large ξ limit the breaking of U ′1 preserves
supersymmetry; thus the U ′1 gauge boson, its gaugino,
ψH and H form a massive supermultiplet which
decouples from the theory.

• The fact that supersymmetry is good at large ξ protects
the light χ fields from obtaining masses of O(

√
ξ) from

loop corrections.

• Now pick charges L, e > 0 so that the contributions to
their slepton masses are positive.

• It is easy to show that (modulo electroweak breaking)
this represents the absolute minimum of the potential.



• λ1 plays a crucial role here in that for λ1 = 0 the D-flat
direction 〈φ〉 = 〈φ〉 >>

√
ξ would lead to an potential

unbounded from below.



The sparticle spectrum

We turn now to the effective low energy theory. Have
decoupling of the U ′1 at low energies so that the anomalous
dimensions of the fields are as in the MSSM; thus for
Higgses and 3rd generation matter fields we have (at one
loop):

16π2γH1
= 3λ2

b + λ2
τ − 3

2
g2
2 − 3

10
g2
1,

16π2γH2
= 3λ2

t − 3

2
g2
2 − 3

10
g2
1,

16π2γL = λ2
τ − 3

2
g2
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10
g2
1,

16π2γQ = λ2
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t − 8

3
g2
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2
g2
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30
g2
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3
g2
3 − 8

15
g2
1,

16π2γbc = 2λ2
b − 8

3
g2
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15
g2
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16π2γτc = 2λ2
τ − 6

5
g2
1,

where λt,b,τ are the third generation Yukawa couplings. For
the first two generations we use the same expressions but
without the Yukawa contributions.



The soft scalar masses are given by

m2
Q = m2

Q − 1

3
Lξ′ m2

tc = m2
tc − (2

3
L+ e)ξ′,

m2
bc = m2

bc + (4

3
L+ e)ξ′, m2

L = m2
L + Lξ′,

m2
τc = m2

τc + eξ′,

where

m2
Q = 1

2
|m0|2µ

d

dµ
γQ = 1

2
|m0|2βi

∂

∂λi
γQ (2)

and so on, and we have written the effective FI parameter
as

ξ′ = −
m2
φ

qφ
.

The 3rd generation A-parameters are given by

At = −m0(γQ + γtc + γH2
),

Ab = −m0(γQ + γbc + γH1
),

Aτ = −m0(γL + γτc + γH1
)

and we set the corresponding first and second generation



quantities to zero. The gaugino masses are given by

Mi = m0|
βgi

gi
|.

Without loss of generality set ξ′ = 1(TeV)2.

• Choose input values for m0, tanβ, L, e and signµ

• Calculate the appropriate dimensionless coupling input
values at the scale MZ by an iterative procedure
involving the sparticle spectrum, and the loop
corrections to α1···3, mt, mb and mτ .

• Determine a given sparticle mass at its own scale
by running the dimensionless couplings up and then
using AMSB results including full one-loop corrections.
Bagger, Matchev, Pierce, Zhang

• We will present results for m0 = 40TeV, for which value
the gluino mass is around 900GeV.
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Fig. 1: The region of (e, L) space corresponding to an

acceptable electroweak vacuum, for m0 = 40TeV and

tanβ = 10.



mass (GeV) 1loop 2loops 3loops
g̃ 914 891 888
t̃1 543 540 529
t̃2 766 757 747
ũL 768 758 746
ũR 826 812 801

b̃1 728 719 709

b̃2 940 932 923

d̃L 830 816 805

d̃R 949 941 932
τ̃1 211 207 208
τ̃2 251 247 247
ẽL 228 228 228
ẽR 241 235 235
ν̃e 227 220 220
ν̃τ 225 217 218
χ1 105.677 129.499 129.618
χ2 353 361 360
χ3 530 554 545
χ4 543 566 558

χ±1 105.917 129.749 129.871

χ±2 539 563 554
h 117 117 117
H 276 318 301
A 275 317 301
H± 288 328 312

χ±1 − χ1 (MeV) 240 250 250

Table 1: Mass spectrum for m0 = 40TeV, tanβ = 10,
Lξ′ = 0.08(TeV)2, eξ′ = 0.07(TeV)2



• Large 3-loop effects for squarks

• Characteristic feature of AMSB: M2 < M1, where M1,2

are the bino and wino masses respectively. As a result
the lightest neutralino (often the LSP) is predominately
the neutral wino and the lighter chargino (often the
NLSP) is almost degenerate with it.

• The lightest neutralino is the LSP.
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We see that acceptable values of mh are obtained for
7 < tanβ < 25, and of the stau mass for tanβ < 19.



Mass sum rules

The following sum rules for the physical masses are
essentially independent of L, e (due to cancellation of L, e
terms in tree masses).

m2

t̃1
+m2

t̃2
+m2

b̃1
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− 2m2
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2
,
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2
,

m2
ũR
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+m2

ũL
+m2
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2
,

m2
ũL
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−m2

ũR
−m2

ẽR
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2
,
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(
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)

= 0.4 (mg̃)
2
,

m2
A − 2 sec 2β

(

m2
τ̃1

+m2
τ̃2
− 2m2

τ

)

= = 0.39 (mg̃)
2
.

• The numerical coefficients on the RHS are slowly varying
functions of tanβ; the results above are for tanβ = 5.

• The existence of these sum rules will be a useful
distinguishing feature of the AMSB scenario.



Conclusions

• The AMSB scenario is an attractive alternative to (and
easily distinguished from) MSUGRA.

• Have shown how a U ′1 gauge symmetry broken at high
energies can lead in a natural way to the FI-solution to
the tachyonic slepton problem in the context of anomaly
mediation.

• Gives sparticle spectrum described by the parameter set
m0, L, e, tanβ, sign(µ).

• Allowed set of L, e comparatively restricted.

• Scenario immediately testable should sparticles be
discovered in experiments at the LHC.


