Neutralino pair annihilations with supersymmetric CP violation

T. Nihei (Nihon Univ.)

SUSY 2005 July 18-23, 2005 IPPP, Durham

Neutralino pair annihilations with supersymmetric CP violation - p.1

Contents

- 1. Introduction Supersymmetry and dark matter
- 2. Minimal SUSY SM with CP violation CP-violating paramters in the MSSM
- 3. Neutralino pair annihilations $\chi \chi \rightarrow f \bar{f}, W^+W^-$
- 4. Numerical results Relic density, indirect detection
- 5. Conclusions

1. Introduction

Relic density

Recent cosmological observations have convinced us that Our Universe \approx Dark Energy + CDM.

WMAP (2001-, NASA) $\Omega_{\chi}h^2 = 0.1126^{+0.008}_{-0.009}$ (χ : CDM) $\Omega_{\chi} \equiv \rho_{\chi}/\rho_c$ $h \approx 0.7$ ($H_0 = 100 h$ km/s/Mpc)

SUSY naturally accommodates a candidate for CDM.

Effect of supersymmetric CP violation on DM observables

2. Minimal SUSY SM with CP violation

Relevant parameters

M_1, M_2	 gaugino mass
$oldsymbol{\mu}$	 higgsino mass
m_0	 sfermion mass for the 3rd generation
	(10 TeV for the first two gen. to suppress EDM)
A	 scalar trilinear coupling for the 3rd gen.
tan $oldsymbol{eta}$	 ratio of higgs vevs
m_A	 pseudoscalar higgs mass

• CP violating phases

 $\mu = |\mu| \exp(i \theta_{\mu}), A = A_0 \exp(i \theta_A)$

• GUT relation for gaugino masses $M_1 = \frac{5}{3} \tan^2 \theta_W M_2$ (M_i : real) Scalar–pseudoscalar mixing
 Pilaftsis (1998)

Im($A \mu$) induces S–PS mixing at one-loop level.

$$egin{pmatrix} H_1^0 \ H_2^0 \ H_3^0 \ \end{pmatrix} = O_H \left(egin{pmatrix} \phi_1 \ \phi_2 \ A \ \end{pmatrix}$$

For
$$heta_{\mu}= heta_{A}=0, \ H_{1}^{0}=H, \ H_{2}^{0}=h, \ H_{3}^{0}=A$$

Neutralino DM

 $egin{aligned} \chi &= N_{11}\widetilde{B} + N_{12}\widetilde{W}^3 + N_{13}\widetilde{H}_1^0 + N_{14}\widetilde{H}_2^0 \ & M_1 \ll |\mu| o \widetilde{B} ext{-like LSP} \ & M_1 pprox |\mu| o ext{Mixed LSP} \ & M_1 \gg |\mu| o \widetilde{H} ext{-like LSP} \end{aligned}$

3. Neutralino pair annihilations

• Relic density

Boltzmann equation $rac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma v
angle (n_{\chi}^2 - n_{\chi}^{
m eq2})$

Indirect detection

Positron flux from χ pair annihilation in the halo Most important process $\chi\chi \to W^+W^-$ followed by $W^+ \to e^+\nu_e$ $\frac{dF(e^+)}{dE} = \frac{\rho_0^2}{m_\chi^2} \int d\epsilon \ G(E,\epsilon) \sum_i \langle \sigma_i v \rangle f_i(\epsilon)$ Local halo DM density $\rho_0 = 0.43 \text{ GeV/cc}$ Containment time $\tau = 10^7 \text{ yr}$ Galactic Halo: $v \approx 10^{-3}$ Kamionkowski–Turner (1991)

Cross sections

	Process	s-channel	t & u-channel
\widetilde{B} -like	$\chi\chi ightarrow far{f}$	H^0_i , Z	\widetilde{f}_{1-6}
	$\chi\chi ightarrow H^0_iH^0_j$	H_k^0 , Z	χ^0_{1-4}
	H^+H^-	H^0_i , Z	$\chi^{\pm}_{1,2}$
\widetilde{H} -like	$\chi\chi ightarrow W^+W^-$	H^0_i , Z	$\chi^{\pm}_{1,2}$
	ZZ	H_i^0	χ^0_{1-4}
	$\chi\chi ightarrow ZH^0_i$	$\overline{H_{j}^{0},Z}$	χ^0_{1-4}
	$W^{\pm}H^{\mp}$	H_i^0	$\chi^{\pm}_{1,2}$

- Typically dominant for \widetilde{B} -like LSP
- \bullet S-wave suppression for $v \ll 1~(\sigma v \sim m_f^2/m_\chi^2)$

 $\chi\chi$

- ullet Open for $m_\chi > m_W$
- Typically dominant for H-like LSP
- No s-wave suppression

 $\chi\chi H^0$ interaction

$$\mathcal{L} = \sum_{i=1}^{3} ar{\chi} \left(C_{S}^{\chi\chi H_{i}^{0}} + C_{P}^{\chi\chi H_{i}^{0}} \gamma_{5}
ight) \chi H_{i}^{0}$$

 H^0_i exchange contribution to $\chi\chi
ightarrow WW$

$$egin{aligned} \sigma v &= & rac{1}{32\pi m_\chi^2} \left[(s-4m_\chi^2) \left| \sum_{r=H_i^0} rac{C^{WWr} \, C_S^{\chi\chi r}}{s-m_r^2+i\,\Gamma_r\,m_r}
ight|^2
ight. \ &+ s \left| \sum_{r=H_i^0} rac{C^{WWr} \, C_P^{\chi\chi r}}{s-m_r^2+i\,\Gamma_r\,m_r}
ight|^2
ight] rac{s^2-4m_W^2 s+12m_W^4}{8m_W^4} \end{aligned}$$

Relevant couplings for H_i^0 exchange

4. Numerical results

Parameters

σv at $v = 10^{-3}$

WW is significantly enhanced due to lightest higgs exchange for $\text{Im}(\mu) \neq 0$. (\widetilde{B} -like or mixed LSP)

 $egin{aligned} |N_{11}| &pprox 0.9 \ |N_{12}| &pprox 0.01 \ |N_{13}| &pprox |N_{14}| &pprox 0.05 \end{aligned}$

Relic density

Effect of θ_A is typically small.

For \widetilde{H} -like LSP, θ_{μ} dependence is weak. (Chargino exchange is dominant.)

Dominant final state at $v = 10^{-3}$

In the presence of CP violation, W^+W^- final state can be dominant even for \tilde{B} -like LSP.

Variation with θ_{μ}

Strong θ_{μ} dependence for \widetilde{B} -like or mixed LSP.

Positron fraction

5. Conclusions

Neutralino (χ) dark matter with SUSY CP violation

Effect of supersymmetric CP-violating phases (θ_{μ} , θ_{A}) on χ pair annihilation cross section

• $\chi\chi \to W^+W^-$ is significantly enhanced due to lightest higgs exchange for $\mathrm{Im}(\mu) \neq 0$. (\widetilde{B} -like or mixed LSP)

- Strong phase dependence of $\Omega_\chi h^2$
- WMAP allowed region for nonvanishing CP phases
- Sizable effect in the positron flux