Gravitino Dark Matter In Gauge Mediated SUSY Breaking Models*†

Gilbert Moultaka LPTA-Montpellier

SUSY05, Durham Jul. 18-23 '05

£

 \blacksquare

£

 \bigoplus

£

 \blacksquare

£

£ Introductory motivations

 \oplus

£

 \oplus

£

 \oplus

Ŧ,

- £ Introductory motivations
- Gauge Mediated Susy Breaking

£

 \bigoplus

£

 \bigcirc

f

- £ Introductory motivations
- Gauge Mediated Susy Breaking
- £ Coupling to Supergravity

 \blacksquare

£

 \bigcirc

£

- £ Introductory motivations
- Gauge Mediated Susy Breaking
- £ Coupling to Supergravity
- Gravitino Problem Messenger Solution

£

 \bigcirc

f

- £ Introductory motivations
- Gauge Mediated Susy Breaking
- £ Coupling to Supergravity
- Gravitino Problem Messenger Solution
- \$ GUT groups: SU(5), SO(10)

 \blacksquare

f

- £ Introductory motivations
- Gauge Mediated Susy Breaking
- £ Coupling to Supergravity
- Gravitino Problem Messenger Solution
- \$ GUT groups: SU(5), SO(10)
- € Gravitino relic density

- £ Introductory motivations
- Gauge Mediated Susy Breaking
- £ Coupling to Supergravity
- Gravitino Problem Messenger Solution
- \$ GUT groups: SU(5), SO(10)
- Gravitino relic density
- £ Concluding remarks

... a BIG question:

Does the Dark Matter puzzle have anything to do with particle physics beyond the Standard Model (i.e.(!) with Supersymmetry) ?

... a BIG question:

Does the Dark Matter puzzle have anything to do with particle physics beyond the Standard Model (i.e.(!) with Supersymmetry) ?

... a smaller question: is there a connection between the nature and properties of the Dark Matter, and the origin of Supersymmetry breaking?

... a BIG question:

Does the Dark Matter puzzle have anything to do with particle physics beyond the Standard Model (i.e.(!) with Supersymmetry) ?

... a smaller question: is there a connection between the nature and properties of the Dark Matter, and the origin of Supersymmetry breaking?

Who is the LSP?

... Neutralino?... Axino? ... Gravitino?...Otherino?

... a BIG question:

Does the Dark Matter puzzle have anything to do with particle physics beyond the Standard Model (i.e.(!) with Supersymmetry) ?

... a smaller question: is there a connection between the nature and properties of the Dark Matter, and the origin of Supersymmetry breaking?

Who is the LSP?

... Neutralino?... Axino? ... Gravitino?...Otherino?

in this talk:

ightarrow Gravitino with mass $m_{3/2} \sim 1 keV
ightarrow 10 MeV$

Gauge Mediated Susy Breaking | €

$$W \supset \kappa \widehat{S} \widehat{\Phi}_M \widehat{\overline{\Phi}}_M + \frac{\lambda}{3} \widehat{S}^3 + \Delta W(\widehat{S}, \widehat{\phi}_i)$$

S: "spurion" field, singlet under all gauge groups

 $\Phi_M, \overline{\Phi}_M$: quark-like or lepton-like charged messengers under $SU(3)_c \times SU(2)_L \times U(1)_Y$

$$\Phi \supset (3, 1, -\frac{1}{3}) \text{ and } (1, 2, \frac{1}{2})$$

$$\overline{\Phi}_{M} \supset (\overline{3}, 1, \frac{1}{3}) \text{ and } (1, 2, -\frac{1}{2})$$

e.g.
$$5+\overline{5}$$
 or $10+\overline{10}$ of $SU(5)_{GUT}$ $16+\overline{16}$ of $SO(10)_{GUT}$

 ϕ_i messengers: charged under G_M

SUSY Breaking
$$\Rightarrow$$
 < F_S > \neq 0, also < S > \neq 0 \Downarrow

$$M_{s_{\pm}} = M_X (1 \pm \frac{\langle F_S \rangle}{M_X^2})^{1/2}, \quad M_f = \kappa \langle S \rangle \equiv M_X$$

$$\Rightarrow \psi_S = \frac{\langle F_S \rangle}{\langle F \rangle} \tilde{G} + \dots$$

$$\Rightarrow m_{3/2} = {< F_{TOT}> \over \sqrt{3} m_{Pl}}$$
 with $< F_{TOT}> \gtrsim < F_S>$

$$\Rightarrow m_{1/2} \sim \left(\frac{\alpha}{4\pi}\right) \frac{\langle F_S \rangle}{M_X}, \qquad m_0^2 \sim \left(\frac{\alpha}{4\pi}\right)^2 \left(\frac{\langle F_S \rangle}{M_X}\right)^2$$

Moreover, one expects
$$G_F^{-1/2} \sim \frac{< F_{TOT}>}{M_X} \sim m_{3/2} \left(\frac{m_{Pl}}{M_X}\right)$$

⇒ very light gravitino

[compare mSUGRA
$$G_F^{-1/2} \sim \frac{< F_{TOT}>}{m_{Pl}} \sim m_{3/2}$$
]

Coupling to Supergravity £

$$V_B = e^{K/m_{\text{Pl}}^2} \left[K^{ij^*} (W \frac{K_i}{m_{\text{Pl}}^2} + W_i) (W^* \frac{K_{j^*}}{m_{\text{Pl}}^2} + W_{j^*}^*) - \frac{3WW^*}{m_{\text{Pl}}^2} \right]$$

$$W \to W + \langle W \rangle$$
, $\langle W \rangle = \frac{1}{\sqrt{3}} \langle F \rangle \times m_{\text{Pl}} \simeq m_{3/2} m_{\text{Pl}}^2$

R-Symmetry

Cosmological Cte $\simeq 0$

holomorphic part:

$$\Rightarrow K \supset f(\phi) \rightarrow W \supset \frac{\langle W \rangle}{m_{\text{Pl}}} f(\phi) = m_{3/2} f(\phi)$$

Kähler, super-Weyl trans. $K \to K + f(\phi) + f^*(\phi^*)$

$$W \to e^{-f(\phi)}W$$

e.g.
$$K_{\text{ren}} \supset \mathbf{5}_M \mathbf{\bar{5}}_F \rightarrow W \supset m_{3/2} \mathbf{5}_M \mathbf{\bar{5}}_F$$

e.g.
$$K_{\text{non-ren}} \supset \frac{1}{m_{Pl}} \{ \overline{\mathbf{5}}_M \overline{\mathbf{5}}_{F,H} \mathbf{10}_F, \, \mathbf{5}_M \mathbf{10}_F \mathbf{10}_F \ldots \}$$

 $E\gg m_{3/2}$

$$\Psi_{\mu} = i\sqrt{\frac{2}{3}} \, \frac{\partial_{\mu}\tilde{G}}{m_{3/2}} + \dots$$

However...there is much more to it!

$$\rightarrow \psi_S = \frac{F_S}{F} \tilde{G} + \dots$$

⇒ Consider the full Supergravity Lagrangian

Gravitino Problem – Messenger Solution | € |

Gravitino Problem

$$T_{RH} \gtrsim T_{3/2}^f$$

$$<\sigma v> \simeq \frac{g_3^2 m_{gluino}^2}{m_{3/2} m_{Pl}^2}$$

$$\rightarrow < \sigma v > n_{rad} \lesssim H$$

$$ightarrow T_{3/2}^f \simeq 1 TeV \left(rac{m_{3/2}}{10 keV}
ight)^2 \left(rac{1 TeV}{m_{gluino}}
ight)^2 \left(rac{g_*}{230}
ight)^{rac{1}{2}}$$

 $m_{3/2} \ll T_{3/2}^f$ relativistic at freeze-out

$$\Omega_{3/2}h^2 \simeq 5. \left(\frac{m_{3/2}}{10keV}\right) \left(\frac{230}{g_*(T_{3/2}^f)}\right)$$

compare $\Omega_{3/2}h^2 \simeq 0.1$

dilution?
$$\simeq 40 imes \left(\frac{m_{3/2}}{10 keV}\right) \left(\frac{230}{g_*(T_{3/2}^f)}\right)$$

Messenger Solution

$$T_{RH} \gtrsim M_{mess}$$

$$\Omega_M h^2 = \frac{s_0 Y_M}{\rho_c} M_{mess}$$

$$Y_M \sim rac{x_f}{M_{mess}m_{Pl}} rac{1}{<\sigma v>} rac{1}{g_*^{1/2}}$$

$$\Omega_M h^2 \simeq 10^5 \left(rac{M_{mess}}{10^3 TeV}
ight)^2$$

IF STABLE $\Rightarrow \Omega_M \gg 1$!

THE LMP MUST BE

UNSTABLE

$$\Gamma_M \sim t_d^{-1} \sim H \sim T_d^2$$

 $T_d \stackrel{?}{<} T_{MD} \stackrel{?}{<} T_{3/2}^f \Rightarrow \text{Important Gravitino Dilution}$ M. Fujii & T. Yanagida, PLB 549 (2002) 273.

E. A. Baltz & H. Murayama, JHEP 0305:067 (2003).

- ⇒ Messenger number violating operators can originate from:
 - a holomorphic contribution to the Kähler potential, with or without Planck scale suppression
 - a renormalizable or non-renormalizable contribution to the superpotential
 - a non-holomorphic contribution to the Kähler potential
- ⇒ for each case, take into account ALL couplings of the messenger and spurion sectors to the MSSM sector and to the gravitino (goldstino) in the Supergravity Lagrangian, to calculate:
 - \bullet the yield $Y_{\!M}$ and the thermal freeze-out density of the lightest messenger
 - the background temperature at which the messenger dominates the energy density of the universe $T_{MD} \simeq \frac{4}{3} M_{s-} \times Y_M$
 - ullet The decay temperature T_d of the lightest messenger

$$\rightarrow$$
 entropy release $\rightarrow Y_{3/2}^{after} = Y_{3/2}^{before}/\Delta_{s_{-}}$

$$\Delta_{s_{-}} pprox 28 \left(rac{M_{s_{-}}}{10^8 {
m GeV}}
ight) \left(rac{Y_{s_{-}}}{10^{-10}}
ight) \left(rac{\Gamma_{s_{-}}}{10^{-25} {
m GeV}}
ight)^{-rac{1}{2}} \left(rac{g_{>}}{10}
ight)^{rac{1}{4}}$$

- ⇒ a few other things to worry about:
 - gravitino regeneration through messenger decay
 - MSSM particles production (especially NLSP) through messenger decay
 - out-of-equilibrium NLSP decay into gravitinos
 - BBN constraints
 - hot/warm dark matter components

$$\Rightarrow \, \Omega_{3/2} \simeq \Omega_{3/2}^{th} + \Omega_{3/2}^{Mess} + \Omega_{3/2}^{NLSP}$$

GUT groups:
$$SU(5)$$
, $SO(10)$

The lightest messenger scalar is:

- ullet if ${f 5}+{ar 5}$, ${ ilde
 u}_L$ -like or ${ ilde e}_L$ -like
- if $10 + \overline{10}$, electrically charged $SU(2)_L$ singlet
- \bullet if $16+\overline{16}$, an MSSM singlet

[S. Dimopoulos, G. F. Giudice, A. Pomarol, PLB 389 (1996) 37; T. Hahn, R. Hempfling, hep-ph/9708264]

Gravitino relic density (

SU(5)

Contours of $\Omega_{3/2}$ in the plane $T_{\rm RH}-m_{3/2}$. $0.01 \le \Omega_{3/2} \le 1$ (white: $\Omega_{3/2} > 1$; yellow: $\Omega_{3/2} < 0.01$)

Bino-like NLSP lower panels; stau-like NLSP upper panels. $M_{NLSP}=150GeV$ $M_X=10^5\,{\rm GeV}$ left panels; $M_X=10^{10}\,{\rm GeV}$ right panels.

 $egin{aligned} W_{\mathsf{ren}} &\supset \{ & & \mathbf{\bar{5}}_{M}\mathbf{\bar{5}}_{F,H}\mathbf{10}_{F} \,,\, \mathbf{5}_{M}\mathbf{10}_{F}\mathbf{10}_{F} \,,\, \mathbf{5}_{M}\mathbf{\bar{5}}_{F,H}\mathbf{24}_{H} \,, \\ & & & \mathbf{\bar{5}}_{M}\mathbf{5}_{H}\mathbf{24}_{H} \,,\, \mathbf{\overline{10}}_{M}\mathbf{5}_{H}\mathbf{5}_{H} \,,\, \mathbf{10}_{M}\mathbf{\bar{5}}_{H,F}\mathbf{\bar{5}}_{H,F} \,, \\ & & & & & \mathbf{10}_{M}\mathbf{10}_{F}\mathbf{5}_{H} \,,\, \mathbf{10}_{F}\mathbf{\overline{10}}_{M}\mathbf{24}_{H} \}. \end{aligned}$

NO ENTROPY DILUTION

SU(5)

 $\Omega_{3/2}$ in the plane $M_X-m_{3/2}$; $T_{\rm RH}=10^{12}GeV$; one pair of messengers sitting in $5+\overline{5}$; the lightest messenger X is $\tilde{\nu}_L$ -like, NLSP bino-like both panels.

Left panel S heavier than X; Right panel S lighter than X.

$$K_{\mathsf{ren}} \supset \mathbf{5}_M \mathbf{\bar{5}}_F \ o W \supset m_{\mathsf{3/2}} \mathbf{5}_M \mathbf{\bar{5}}_F$$

$$X \rightarrow l + \lambda$$
 (Fuji, Yanagida)

BUT other contributions from Supergravity sector and spurion field (depending on its mass) :

$$XX \to \tilde{G}\tilde{G}, X \to \tilde{\nu}\tilde{G}\tilde{G}$$

 $X \to S\tilde{\nu}$ (if S lighter than X)

...other possibilities in SU(5)

 $W_{\mathsf{non-ren}} \supset \frac{1}{m_{\mathsf{Pl}}} \{ egin{array}{ll} \overline{5}_M 10_F 10_F 10_F \, , \, 5_M 5_H \overline{5}_{H,F} \overline{5}_{H,F} \, , \\ \overline{5}_M 5_H 5_H \overline{5}_{H,F} \, , \, 5_M 5_H 5_H 10_F \, , \\ \overline{5}_M \overline{5}_H 10_F 24_H \, , \, 5_M \overline{5}_{H,F} 24_H 24_H \, , \\ \overline{5}_M 5_H 24_H 24_H \, , \, 10_F \overline{10}_M 5_H \overline{5}_{H,F} \, , \\ \overline{10}_M \overline{5}_{H,F} \overline{5}_{H,F} \overline{5}_{H,F} \, , \, 10_M 5_H 5_H 5_H \, , \\ 10_M \overline{5}_{H,F} 10_F 10_F \, , \, 10_M 10_F 5_H 24_H \, , \\ \overline{10}_M 5_H 5_H 24_H \, , \, 10_M \overline{5}_{H,F} \overline{5}_{H,F} 24_H \, , \\ \overline{10}_M 10_F 24_H 24_H \, , \, 5_M \overline{5}_M 5_M \overline{5}_F \, , \\ 10_M \overline{10}_M 10_M 10_F \} \ \end{array}$

$$K_{\text{hol}} = \frac{W_{\text{ren}}}{m_{\text{Pl}}} + h.c.$$

 $egin{aligned} K_{\mathsf{non-hol}} &\supset rac{1}{m_{\mathsf{Pl}}} \{ & \mathbf{5}_{M}^{\dagger} \mathbf{ar{5}}_{H,F} \mathbf{10}_{F} \,,\, ar{\mathbf{5}}_{M} \mathbf{5}_{H}^{\dagger} \mathbf{10}_{F} \,,\, ar{\mathbf{5}}_{M}^{\dagger} \mathbf{10}_{F} \mathbf{10}_{F} \,, \\ & \mathbf{5}_{M}^{\dagger} \mathbf{5}_{H} \mathbf{24}_{H} \,,\, \mathbf{5}_{M} \mathbf{5}_{H}^{\dagger} \mathbf{24}_{H} \,,\, ar{\mathbf{5}}_{M} ar{\mathbf{5}}_{H,F}^{\dagger} \mathbf{24}_{H} \,, \\ & ar{\mathbf{5}}_{M}^{\dagger} ar{\mathbf{5}}_{H,F} \mathbf{24}_{H} \,,\, \mathbf{10}_{M}^{\dagger} \mathbf{5}_{H} \mathbf{5}_{H} \,,\, ar{\mathbf{10}}_{M} ar{\mathbf{5}}_{H,F}^{\dagger} \mathbf{5}_{H} \,, \\ & ar{\mathbf{10}}_{M}^{\dagger} ar{\mathbf{5}}_{H,F} ar{\mathbf{5}}_{H,F} \,,\, ar{\mathbf{10}}_{M}^{\dagger} \mathbf{10}_{F} \mathbf{5}_{H} \,,\, \mathbf{10}_{M} \mathbf{10}_{F} ar{\mathbf{5}}_{H}^{\dagger} \\ & \mathbf{10}_{M}^{\dagger} \mathbf{10}_{F} \mathbf{24}_{H} \,,\, \mathbf{10}_{M} \mathbf{10}_{F}^{\dagger} \mathbf{24}_{H} \,,\, + \mathrm{h.c.} \} \end{aligned}$

Contours of $\Omega_{3/2}$ in the plane $M_X-m_{3/2}$ for one pair of messengers sitting in $\mathbf{5}+\overline{\mathbf{5}}$ representations; the lightest messenger X decays into two goldstinos and one sfermion or one sfermion and one gaugino via the mixing term $\sim X\phi_1(M_{\text{GUT}}/m_{\text{Pl}})$ in the Kähler function. The red NE-SW dashed area in the left part of the figure results from big-bang nucleosynthesis constraints on lightest messenger decay and the NW-SE area is forbidden by the contribution of gravitinos to the energy density at BBN.

SU(5)

Contours of $\Omega_{3/2}$ in the plane $M_X-m_{3/2}$ for one pair of messengers sitting in $\mathbf{5}+\overline{\mathbf{5}}$, but for decay width $\Gamma\sim 10^{-10}M_X^3/m_{\rm Pl}^2.$

SO(10)

⇒ The lightest messenger is a gauge singlet

$$(\tilde{\nu}_R$$
-like)

Contours of $\Omega_{3/2}$ in the plane $M_X-m_{3/2}$ for one pair of messengers sitting in $16+\overline{16}$ representations of SO(10); the lightest messenger X is a singlet under $SU(3)\times SU(2)\times U(1)$. Its loop-suppressed annihilation cross-section scales as $(\alpha/4\pi)^4/M_X^2$, and it decays into sparticles through non-renormalizable operators with width $\Gamma \sim 10^{-3} M_X^3/m_{\rm Pl}^2$.

Concluding remarks £

- gravitino LSP is most natural in GMSB-like models
- messenger (and secluded) degrees of freedom can affect the thermal history of the early Universe
- ⇒ provides a solution to the gravitino problem AND makes the gravitino a viable candidate for cold dark matter.

However, requires extensions of GMSB.

- \Rightarrow Generically favours SO(10) over SU(5) GUT groups.
- ...an experimental direct hint for such dark matter can come only from the colliders!